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Introduction
Our aim is to analyze the behavior of closed

curves extracted from segmented images. Our
curves represent material boundaries in images of
physical experiments. Before reaching us, those
images undergo a lot of preprocessing, which dis-
torts the original shape of the curves. That is why,
prior to analyzing them, we have to regularize the
curves in order to ensure the analysis is correct.
For example, in the figure on the right we have
a segmentation of an image of a hemisphere of
fracturing metal. We want to study the bound-
aries of the metal pieces in order to learn more
about where and how the fracturing occurs. Since
the segmentation was achieved through simple
thresholding of the images, there is a lot of noise
around the boundaries, and we would like to find
a way to correct this noise. Usually, we do not
know how the curves look, since the behavior
of materials is not always physically understood.
Sometimes we are allowed, however, to make
some assumptions about their general shapes. We
would like to use those assumptions to regularize
the curves in a way that they are a better repre-
sentation of the physical phenomena going on in
the experiment. To do that, we use curve densities
which we describe in detail below.

Background
Our problem is an ill-posed inverse problem.

We are trying to retrieve the original images, but
we have lost some information in the process of
acquiring the data. Regularization is an efficient
way to solve such inverse problems. It uses some
a priori information about the solution to stabilize

This is an image of a hemisphere of fracturing
metal. The small white shapes represent the dif-
ferent pieces the metal breaks into. The bound-
aries of those pieces are not the true boundaries,
since they get distorted during the segmentation.

the problems. Tikhonov was the first one to in-
troduce a penalty term to the solving of the least-
squares problem [1]. Later his model became a
general scheme for solving inverse problems:

min
u

F(u) = D(u,d)+λR(u). (1)

We minimize F(u) where u is the reconstructed
image u. D(u,d) is a metric showing the distance
between the reconstructed image u, and the data
we have, d. R(u) is the regularization term in
which we force the solution to have certain prop-
erties. λ is a parameter balancing the minimiza-
tion of the two terms.

Density-Tuned Regularization
To solve our problem we use the general regu-

larization scheme. We are trying to minimize the
distance between the original and reconstructed
images, and regularize the result using some prior
knowledge about the density of the curve. We use
the area density of the curve which corresponds
to the two-dimensional Housdorff density. While
in the theoretical literature one is primarily con-
cerned with these densities in the limit as the scale
approaches zero, we use a series of approxima-
tions to obtain estimates for the properties of the
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curve on various scales. To calculate density at
some point we consider a circle centered at that
point on the curve. The area density is the ratio
of the area of the region interior both to the curve
and the circle, and the area of the circle. We use
the area density property of describing the behav-
ior of the curve locally to tune our curves to be-
have in a way to fulfill our expectations. For ex-
ample, if we want the curve to be locally flat, then
its area density should be close to 1/2.

We can achieve our goal through density-tuned
regularization of the curve. We use a 2D binary
image, which we obtain by setting the interior
of the curve to one, and the background to zero.
To get an explicit area density representation, we
convolve that image with a disk of some radius.
The value of this convolution at the edges of the
image is equal to the area density of the curve
at that point. We use regularization to force this
value to be close to the area density value we de-
sire the curve to have. We define our metric and
regularization terms as follows:

D(u,d) =
Z

(u−d)2dx (2)

R(u) =
Z

(u∗B− c)2|∇u|dx (3)

Note that u and d are binary images. B(x,r) is a
disk of radius r centered at x . (u ∗B− c)2 is our
tuning term, where c is a constant corresponding
to the desired area density, and ∗ is the convo-
lution operator. |∇u| forces the tuning to occur
mainly on the edges of the image. We substitute
(2) and (3) in (1), and we get a formula for F(u).

Implementation
To minimize F(u) we look for minima in the

opposite direction of the gradient. However, if
we apply the gradient descent method directly,
we run into a problem, since we need to keep u
binary. What we do is first to calculate the first
derivative of F(x). Then we update our binary
image in the appropriate direction. We set the bi-
nary image to one where the derivative is positive,
and to zero where the derivative is negative. The

rest of the binary image remains unchanged. This
way we update the image only on the edges. The
following figure displays some of the results we
achieved with our algorithm.

The left image represents a zoom in on a few
pieces of metal from the hemisphere shown in the
first figure. The right image shows regularization
of the left image, in which we want the boundaries
of the pieces to be locally flat (c = 1/2).

Future
The idea of using densities for curve regular-

ization is still in an early stage of development.
There is still potential for more work and results
in that direction. We developed an analytical rep-
resentation of the problem and implemented basic
algorithms for the solution. Our algorithms can
definitely be improved and sped up. We also be-
lieve that the specific properties of the densities
can be used to make the tuning more dynamic.
We would like to tune the curves to different den-
sity values at different locations, or do the regu-
larization on different scales. The final aim is to
apply our regularization scheme to images from
actual LANL experiments.
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